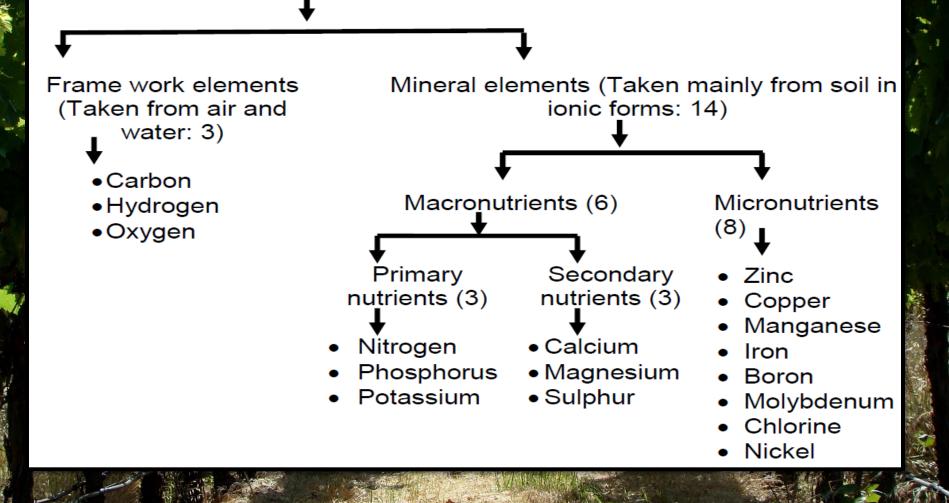
Blending Compatibility Issues

Allen Haynes Simplot SGS California PCA - CCA

Reality

- Issues will occur You will at some point make a "brick" or create a tub of "cottage cheese".
- Improper mixing sequences or procedures will occur.
- You will rush the blending time.
- Physical incompatibility will sometimes arise and may create precipitates or "salting out".
- pH concerns will arise.
- Ambient temperatures will make a difference.

Reality


• A combination that at first seems compatible sits for a few hours and a reaction occurs.

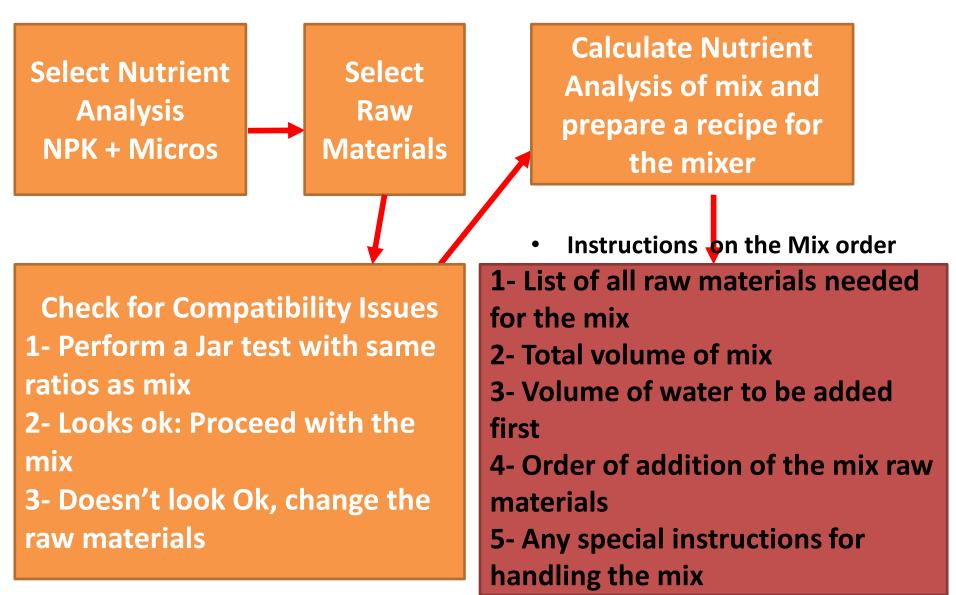
 An example is CAN 17 mixed with Zinc EDTA- its produced pretty clear , but turns into a white paste looking mixture within 1 or 2 hrs.

- Water quality is your base.
 - It's the building block that starts your blend.
 - Pay attention to salts, ph , and foreign material.
 - Any issues can reduce solubility , compatibility and cause stability issues.

Classification of Essential Plant Nutrients

Essential plant nutrients (17)

Advantages of Liquid Fertilizers


- Ease of handling and use
- Require less labor to handle
- 65%(est.) of California Agriculture is under micro irrigation. Utilizes the growers equipment.
- Allows for custom blending to specifications (Soil & Tissue test)
- Allows for applying nutrients at critical plant growth stages
- Adheres to the 4R principals

Types of Base Liquid fertilizers

- Straight Fertilizers • UAN Fertilizers
- Complex Fertilizers

 10-34-0
 - o 10-34-0 ○ 11-37-0
 - 0 11-57-0 Mixed Cortili
- Mixed Fertilizers
 - NPK + Micronutrients: Can be classified into
 - Suspension fertilizers: partially dissolved in water, but some of the nutrients, are suspended in the water using suspension agents such as Bentonites, clays, or other gells.
 - Solution fertilizers: Dissolved completely in water

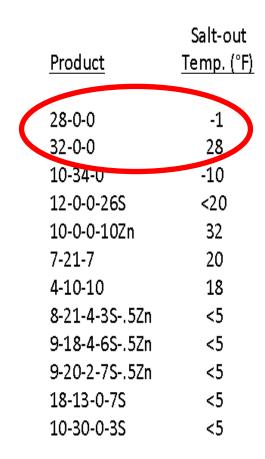
Diagram for Mixing Fertilizers

Formulation Steps

- Confirm Solubility
 - Solubility is defined as the maximal amount of the fertilizer, that can be completely dissolved
 - To be available to plants, at least some of a nutrient must be slightly soluble in the soil solution.
- Confirm Compatibility
 - Put a sample together to make sure of compatibility.
- Make sure of your Order of Addition
- Be aware of the "lon Effect"
 - Solubility is dependent other inputs. The solubility becomes reduced when materials have the same element or ion.
 - An example would be Potassium Nitrate and Potassium Sulfate. They are both compatible, however their solubility becomes reduced because each contain potassium.
- Make sure of the quality of product your using.
 - 10-34-0 is a good example.
 - Watch for polyphosphate content or impurities

Water Quality

 Important for formulating the Fertilizer Mix


pHEC

- Important for injecting through the irrigation System
 - o pH
 - \circ EC
 - Hardness

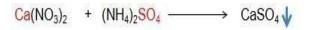
Salt Out Temp

- Salt out Temp: The Temp at which the fertilizer will fall out of solution and precipitate.
- Reduced Solubility due to high ionic strength
- Important why:
 - Storage of liquid Fertilizers through Winter
 - Mixed fertilizers will have a different Salt out Temp than the separate fertilizers before mixing

Order of Addition

- Check your product labels and SDS's about known incompatibility or insolubility issues
- Should always save a little water to mix with at the end. Use about 50 to 80% up front .
- Should always add your liquid materials before drys. It gives a little more breathing room and sometimes provides a little heat if there is a chemical reaction.
- Always put acid into water not water into acid!
- Acid products first-then alkaline products- then neutral products last. This reduces the risk of forming precipitates.
- Add your dry material slowly. Too fast just produces clumps and adds to mixing time.
- Don't mix 2 or more liquid concentrates directly together

Other Factors


- Target your desired salt out temperature.
 - $\circ~$ Colder materials take longer to mix.
 - Heat source can speed up mixing time.
 - $\,\circ\,$ Potash can can cool your solution and add to mix time.
- On-site storage temperature.
- Confirm any potential tank contamination issues at the delivery site.
- Know your materials!
 - Specific gravity
 - Acid , Base, or Neutral
 - Individual salt out temperatures
 - Individual solubility boundaries
- Most of the issues encountered when producing solution blends are related to the quality of source materials

Compatibility

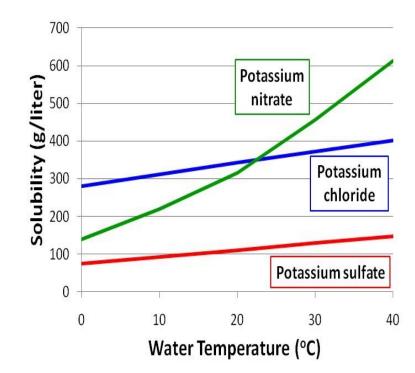
 When mixing fertilizers to prepare a custom blend. The mix is Incompatible if it forms a precipitate.

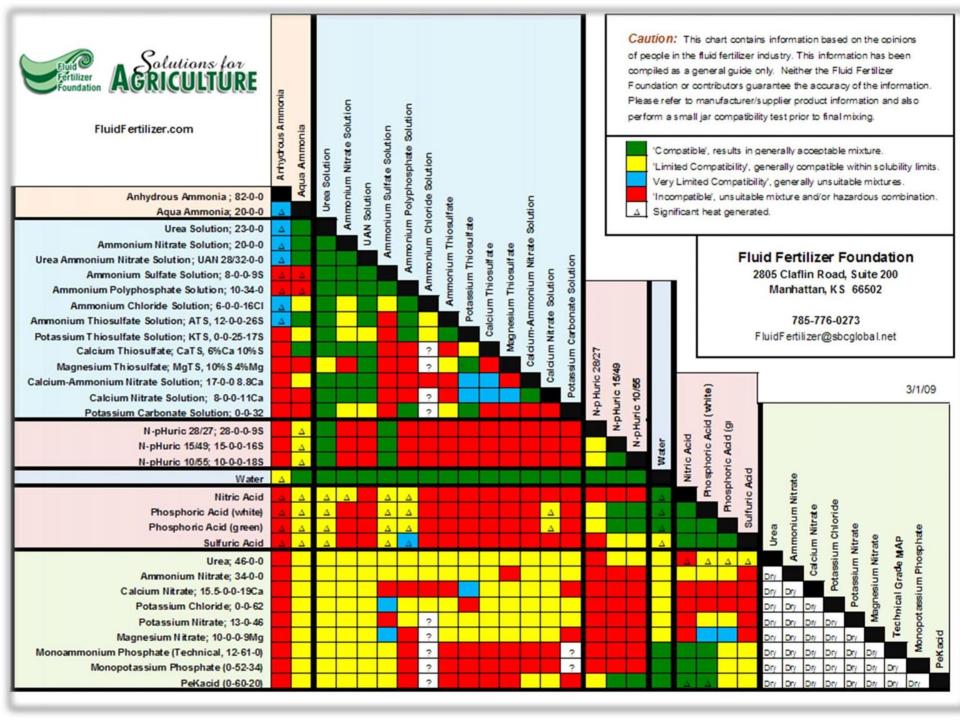
Calcium Nitrate Ammonium Sulfate

Precipitate of Calcium Sulfate (gypsum)

Don't be afraid to "Bench Test"

Your Best Friends





Fertilizer Solubility

Fertilizer Material	Chemical Formula	Solubility (Ib/100 gal)
Ammonia	NH_3	750
Ammonium nitrate	NH4NO3	983
Ammonium sulfate	(NH4)2SO4	592
Borax	Na ₂ B ₄ O ₇ •10H ₂ O	25
Calcium carbonate (limestone)	CaCO3	0.050
Calcium metaphosphate	Ca(PO ₃) ₂	0.008
Calcium nitrate	Ca(NO ₃) ₂ •4H ₂ O	1,117
Calcium sulfate	CaSO ₄ •2H ₂ O	2
Copper sulfate	CuSO4•5H2O	267
Diammonium phosphate	$(NH_4)_2HPO_4$	209
Dicalcium phosphate	CaHPO ₄ •2H ₂ O	0.168
Magnesia	MgO	0.005
Magnesium sulfate	MgSO ₄ •7H ₂ O	709
Manganese sulfate	MnSO ₄ •4H ₂ O	875
Monoammonium phosphate	NH ₄ H ₂ PO ₄	358
Monocalcium phosphate	CaH ₄ (PO ₄) ₂ • H ₂ O *	15.4
Potassium chloride	KCI	233
Potassium nitrate	KNO₃	108
Potassium sulfate	K ₂ SO ₄	67
Sodium nitrate	NaNO₃	608
Urea	CO(NH ₂) ₂	559
Zinc sulfate	ZnSO4•6H2O	584

This is what its all about!

THANK YOU